Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37.205
1.
J Morphol ; 285(5): e21702, 2024 May.
Article En | MEDLINE | ID: mdl-38693678

The skull anatomy of amphisbaenians directly influences their capacity to burrow and is crucial for the study of their systematics, which ultimately contributes to our comprehension of their evolution and ecology. In this study, we employed three-dimensional X-ray computed tomography to provide a detailed description and comprehensive comparison of the skull anatomy of two amphisbaenian species with similar external morphology, Amphisbaena arda and Amphisbaena vermicularis. Our findings revealed some differences between the species, especially in the sagittal crest of the parietal bone, the ascendant process, and the transverse occipital crest of the occipital complex. We also found intraspecific variation within A. vermicularis, with some specimens displaying morphology that differed from their conspecifics but not from A. arda. The observed intraspecific variation within A. vermicularis cannot be attributed to soil features because all specimens came from the same locality. Specimen size and soil type may play a role in the observed differences between A. arda and A. vermicularis, as the single A. arda specimen is the largest of our sample and soil type and texture differ between the collection sites of the two species.


Lizards , Skull , Animals , Skull/anatomy & histology , Lizards/anatomy & histology , Tomography, X-Ray Computed , Species Specificity , Osteology
2.
J Transl Med ; 22(1): 437, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720345

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Durapatite , Glycolysis , Macrophages , Oxidative Phosphorylation , Rats, Sprague-Dawley , Animals , Durapatite/chemistry , Macrophages/metabolism , Macrophages/drug effects , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Rats , Swine , Cell Proliferation/drug effects , Male , Osteogenesis/drug effects , Skull/pathology , Skull/drug effects , Mice , Cellular Microenvironment/drug effects , RAW 264.7 Cells , Bone and Bones/metabolism , Bone and Bones/drug effects
3.
Naturwissenschaften ; 111(3): 29, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713269

The vast majority of pterosaurs are characterized by relatively large, elongate heads that are often adorned with large, elaborate crests. Projecting out in front of the body, these large heads and any crests must have had an aerodynamic effect. The working hypothesis of the present study is that these oversized heads were used to control the left-right motions of the body during flight. Using digital models of eight non-pterodactyloids ("rhamphorhyncoids") and ten pterodactyloids, the turning moments associated with the head + neck show a close and consistent correspondence with the rotational inertia of the whole body about a vertical axis in both groups, supporting the idea of a functional relationship. Turning moments come from calculating the lateral area of the head (plus any crests) and determining the associated lift (aerodynamic force) as a function of flight speed, with flight speeds being based on body mass. Rotational inertias were calculated from the three-dimensional mass distribution of the axial body, the limbs, and the flight membranes. The close correlation between turning moment and rotational inertia was used to revise the life restorations of two pterosaurs and to infer relatively lower flight speeds in another two.


Head , Skull , Animals , Biomechanical Phenomena/physiology , Skull/anatomy & histology , Skull/physiology , Head/anatomy & histology , Head/physiology , Flight, Animal/physiology , Dinosaurs/physiology , Dinosaurs/anatomy & histology , Fossils
4.
Anat Histol Embryol ; 53(3): e13047, 2024 May.
Article En | MEDLINE | ID: mdl-38702894

Sheep (Ovis aries) play an important role in the economy of Turkey and the Balkan Peninsula due to their use in farming. As a domesticated species, sheep's morphometric and morphological diversity is likely determined by selective breeding practices rather than geographic distribution. This study aimed to analyse four different sheep breed skulls and reveal skull asymmetry using geometric morphometric methods. For this purpose, 2D images of 52 sheep skulls from different breeds were analysed from the dorsal view of the skull, using 28 landmarks. In the comparison of sheep skulls from the dorsal view, the first principal components for directional asymmetry (DA) and fluctuating asymmetry (FA) were 32.98% and 39.62% of the total variation, respectively. Sharri and Ivesi (Awassi) sheep breeds had the broadest distribution of skull shapes among the breeds, while Lara e Polisit was the most conservative breed. DA was used as a measure of biomechanical constraints, and FA was used as an indicator of environmental stress. Consistent with DA, both differences in centroid size and shape between breeds were statistically significant. No differences between males and females related to asymmetry were revealed. Ivesi sheep revealed the highest fluctuating asymmetry. Geometric morphometric methods proved to be a useful tool for distinguishing differences in the shape of the skull of different sheep breeds and also can be useful for taxonomic purposes.


Skull , Animals , Skull/anatomy & histology , Female , Male , Sheep/anatomy & histology , Breeding , Principal Component Analysis
5.
Forensic Sci Int ; 359: 111993, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704925

There are numerous anatomical and anthropometrical standards that can be utilised for craniofacial analysis and identification. These standards originate from a wide variety of sources, such as orthodontic, maxillofacial, surgical, anatomical, anthropological and forensic literature, and numerous media have been employed to collect data from living and deceased subjects. With the development of clinical imaging and the enhanced technology associated with this field, multiple methods of data collection have become accessible, including Computed Tomography, Cone-Beam Computed Tomography, Magnetic Resonance Imaging, Radiographs, Three-dimensional Scanning, Photogrammetry and Ultrasound, alongside the more traditional in vivo methods, such as palpation and direct measurement, and cadaveric human dissection. Practitioners often struggle to identify the most appropriate standards and research results are frequently inconsistent adding to the confusion. This paper aims to clarify how practitioners can choose optimal standards, which standards are the most reliable and when to apply these standards for craniofacial identification. This paper describes the advantages and disadvantages of each mode of data collection and collates published research to review standards across different populations for each facial feature. This paper does not aim to be a practical instruction paper; since this field encompasses a wide range of 2D and 3D approaches (e.g., clay sculpture, sketch, automated, computer-modelling), the implementation of these standards is left to the individual practitioner.


Forensic Anthropology , Humans , Forensic Anthropology/methods , Reproducibility of Results , Face/diagnostic imaging , Face/anatomy & histology , Imaging, Three-Dimensional , Skull/diagnostic imaging , Skull/anatomy & histology , Cephalometry/standards , Biometric Identification/methods
6.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724827

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Bone Regeneration , Cell Differentiation , Dioxygenases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Rats, Sprague-Dawley , Skull , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Rats , Skull/pathology , Skull/metabolism , Female , Bone Regeneration/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Cell Proliferation/genetics , HEK293 Cells
7.
J Morphol ; 285(5): e21703, 2024 May.
Article En | MEDLINE | ID: mdl-38720627

Complex morphological structures, such as skulls or limbs, are often composed of multiple morphological components (e.g., bones, sets of bones) that may evolve in a covaried manner with one another. Previous research has reached differing conclusions on the number of semi-independent units, or modules, that exist in the evolution of structures and on the strength of the covariation, or integration, between these hypothesized modules. We focus on the avian skull as an example of a complex morphological structure for which highly variable conclusions have been reached in the numerous studies analyzing support for a range of simple to complex modularity hypotheses. We hypothesized that past discrepancies may stem from both the differing densities of data used to analyze support for modularity hypotheses and the differing taxonomic levels of study. To test these hypotheses, we applied a comparative method to 3D geometric morphometric data collected from the skulls of a diverse order of birds (the Charadriiformes) to test support for 11 distinct hypotheses of modular skull evolution. Across all Charadriiformes, our analyses suggested that charadriiform skull evolution has been characterized by the semi-independent, but still correlated, evolution of the beak from the rest of the skull. When we adjusted the density of our morphometric data, this result held, but the strength of the signal varied substantially. Additionally, when we analyzed subgroups within the order in isolation, we found support for distinct hypotheses between subgroups. Taken together, these results suggest that differences in the methodology of past work (i.e., statistical method and data density) as well as clade-specific dynamics may be the reasons past studies have reached varying conclusions.


Beak , Biological Evolution , Skull , Animals , Beak/anatomy & histology , Skull/anatomy & histology , Birds/anatomy & histology , Charadriiformes/anatomy & histology , Phylogeny
8.
Jt Dis Relat Surg ; 35(2): 354-360, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38727115

OBJECTIVES: This study aims to compare cranial bone ossification between patients with developmental dysplasia of the hip (DDH) and healthy individuals. PATIENTS AND METHODS: Between September 2021 and April 2022, a total of 60 healthy female individuals (median age: 24.5 months; range, 18 to 36 months) and 56 female DDH patients (median age: 23 months; range, 18 to 35 months) were included. Age, head circumference, weight, height, and patency of the anterior fontanel were measured in groups. Percentiles were classified as very low, low, normal, high and very high. All patients were female and those with abnormal thyroid function test, vitamin D, calcium, phosphate and alkaline phosphatase values were not included in the study. For those diagnosed with DDH, they were included in the group regardless of the type of treatment. RESULTS: No statistically significant difference was found between the groups in terms of age and weight (p>0.05). The very low and very high head circumferences were more frequent, and the normal head circumferences were less frequent in the DDH group (p<0.05). There was no significant difference between groups in terms of fontanel closure (p>0.05). In open fontanels, no significant difference was found in both groups in terms of age (p>0.05). CONCLUSION: Our study results showed no significant difference between the fontanel ossifications of children with and without DDH; however, we found that the ossification of the skull bones of children with DDH was different compared to healthy children.


Developmental Dysplasia of the Hip , Osteogenesis , Skull , Humans , Female , Child, Preschool , Infant , Developmental Dysplasia of the Hip/surgery , Developmental Dysplasia of the Hip/pathology , Developmental Dysplasia of the Hip/diagnostic imaging , Skull/pathology , Skull/growth & development , Skull/diagnostic imaging , Osteogenesis/physiology , Case-Control Studies
9.
J Morphol ; 285(5): e21705, 2024 May.
Article En | MEDLINE | ID: mdl-38704727

The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. Unlike Cebus, Sapajus have a mechanically challenging diet and behavioral observations of juvenile Sapajus suggest these foods are exploited early in development. Landmarks were placed on three-dimensional surface models of an ontogenetic series of Sapajus and Cebus skulls (n = 53) and used to generate shape data and jaw-leverage estimates across the tooth row for three jaw-closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different between Sapajus and Cebus throughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater in Sapajus compared to Cebus when calculated at the permanent dentition. We used two-block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates. Sapajus, but not Cebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show that Sapajus and Cebus exhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape in Sapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods in Sapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology.


Cebus , Jaw , Skull , Animals , Skull/anatomy & histology , Skull/growth & development , Jaw/anatomy & histology , Cebus/anatomy & histology , Sapajus/anatomy & histology , Sapajus/growth & development , Feeding Behavior/physiology , Male , Female
10.
Prog Brain Res ; 285: 115-126, 2024.
Article En | MEDLINE | ID: mdl-38705711

The only instruments for opening the cranium considered in this chapter are drills, and in some cases facilitated with a special chisel called a lenticular. There were two kinds of trepan. The modiolus was the Latin name for a crown trepan which had a circular base with teeth which sawed a hole. Then there were the non-penetrating trepans which had a bit shaped to prevent unwanted penetration. They made small openings which could be joined by chisels to remove altogether larger areas of bone than were accessible to modioli. They were the favored instrument from the ancient world up to the Renaissance. At the beginning of the Renaissance, there was a move toward greater use of crown trepans and various methods were applied to stop them sinking too far inward. These included wings in the outer wall and changing the shape of the bit from cylindrical to conic. In time preferences returned to the cylindrical shape and larger diameters. There was also two instruments called lenticulars, the illustrations of which have been confused in the literature. It is now clear that the Roman instrument was shaped to cut the cranium and minimize the need for trepanation. The Renaissance instrument had a different shape and was used to smooth rough bone edges and excise spicules penetrating the meninges. They were simply two different instruments to which the same name was applied.


Surgical Instruments , Surgical Instruments/history , History, Ancient , Humans , History, Medieval , History, 16th Century , History, 15th Century , Skull/anatomy & histology , Trephining/history , Trephining/instrumentation
11.
12.
Sci Rep ; 14(1): 10071, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698134

Dipsadidae is one of the largest clades of extant reptiles, showing an impressive morphological and ecological diversity. Despite this fact, the developmental processes behind its diversity are still largely unknown. In this study, we used 3D reconstructions based on micro-CT data and geometric morphometrics to evaluate the skull morphology of Philodryas agassizii, a small, surface-dwelling dipsadid that consume spiders. Adult individuals of P. agassizii exhibit a cranial morphology frequently observed in juveniles of other surface-dwelling colubroideans, represented in our analysis by its close relative Philodryas patagoniensis. Large orbits, gibbous neurocranial roof and a relatively short jaw complex are features present in juveniles of the latter species. Furthermore, we performed an extensive survey about diet of P. patagoniensis in which we detected an ontogenetic dietary shift, indicating that arthropods are more frequently consumed by juveniles of this dietary generalist. Thus, we infer that P. agassizzii retained not only the ancestral juvenile skull morphology but also dietary preferences. This study reveals that morphological changes driven by heterochronic changes, specifically paedomorphosis, influenced the retention of ancestral life history traits in P. agassizii, and therefore promoted cladogenesis. In this way, we obtained first evidence that heterochronic processes lead speciation in the snake megadiverse clade Dipsadidae.


Skull , Animals , Skull/anatomy & histology , Diet , Snakes/anatomy & histology , X-Ray Microtomography , Genetic Speciation , Phylogeny , Biological Evolution
13.
Adv Tech Stand Neurosurg ; 49: 307-326, 2024.
Article En | MEDLINE | ID: mdl-38700690

Cranial repair in children deserves particular attention since many issues are still controversial. Furthermore, literature data offer a confused picture of outcome of cranioplasty, in terms of results and complication rates, with studies showing inadequate follow-up and including populations that are not homogeneous by age of the patients, etiology, and size of the bone defect.Indeed, age has merged in the last years as a risk factor for resorption of autologous bone flap that is still the most frequent complication in cranial repair after decompressive craniectomy.Age-related factors play a role also when alloplastic materials are used. In fact, the implantation of alloplastic materials is limited by skull growth under 7 years of age and is contraindicated in the first years if life. Thus, the absence of an ideal material for cranioplasty is even more evident in children with a steady risk of complications through the entire life of the patient that is usually much longer than surgical follow-up.As a result, specific techniques should be adopted according to the age of the patient and etiology of the defect, aiming to repair the skull and respect its residual growth.Thus, autologous bone still represents the best option for cranial repair, though limitations exist. As an alternative, biomimetic materials should ideally warrant the possibility to overcome the limits of other inert alloplastic materials by favoring osteointegration or osteoinduction or both.On these grounds, this paper aims to offer a thorough overview of techniques, materials, and peculiar issues of cranial repair in children.


Skull , Humans , Child , Skull/surgery , Plastic Surgery Procedures/methods , Bone Transplantation/methods , Decompressive Craniectomy/methods , Biocompatible Materials
14.
J Vis Exp ; (206)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38709029

Mild traumatic brain injury is a clinically highly heterogeneous neurological disorder. Highly reproducible traumatic brain injury (TBI) animal models with well-defined pathologies are urgently needed for studying the mechanisms of neuropathology after mild TBI and testing therapeutics. Replicating the entire sequelae of TBI in animal models has proven to be a challenge. Therefore, the availability of multiple animal models of TBI is necessary to account for the diverse aspects and severities seen in TBI patients. CHI is one of the most common methods for fabricating rodent models of rmTBI. However, this method is susceptible to many factors, including the impact method used, the thickness and shape of the skull bone, animal apnea, and the type of head support and immobilization utilized. The aim of this protocol is to demonstrate a combination of the thinned-skull window and fluid percussion injury (FPI) methods to produce a precise mouse model of CHI-associated rmTBI. The primary objective of this protocol is to minimize factors that could impact the accuracy and consistency of CHI and FPI modeling, including skull bone thickness, shape, and head support. By utilizing a thinned-skull window method, potential inflammation due to craniotomy and FPI is minimized, resulting in an improved mouse model that replicates the clinical features observed in patients with mild TBI. Results from behavior and histological analysis using hematoxylin and eosin (HE) staining suggest that rmTBI can lead to a cumulative injury that produces changes in both behavior and gross morphology of the brain. Overall, the modified CHI-associated rmTBI presents a useful tool for researchers to explore the underlying mechanisms that contribute to focal and diffuse pathophysiological changes in rmTBI.


Brain Concussion , Disease Models, Animal , Skull , Animals , Mice , Brain Concussion/pathology , Skull/pathology , Skull/injuries , Skull/surgery , Male , Percussion/methods , Brain Injuries, Traumatic/pathology
15.
Sci Adv ; 10(14): eadn3784, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569040

Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.


Brain , Head , Animals , Mice , Reproducibility of Results , Skull , Electronics , Wireless Technology
16.
Commun Biol ; 7(1): 456, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609453

Among the least studied portion of the pterosaur skeleton is the palate, which tends to be poorly preserved and commonly only visible from one side (the ventral portion). Even in well-preserved specimens, the bones tend to be fused, with the limits of individual palatal elements obscured. To shed new light on this region, we employed advanced X-ray imaging techniques on the non-pterodactyloid Kunpengopterus (Wukongopteridae), and the pterodactyloids Dsungaripterus (Dsungaripteridae), Hongshanopterus (Istiodactylidae), and Hamipterus (Hamipteridae). Our analyses revealed the presence of sutures between palatal bones in Dsungaripterus and Kunpengopterus, which resulted in different interpretations of the relation between palatine, ectopterygoid, and pterygoid, leading to a new identification of the palatal openings. Furthermore, our study shows six main observations such as the variation of the angle between the palatine rami and the variation in the relative sizes of the palatal openings. We also point out that the presence of a maxillopalatine fenestra (previously identified as postpalatine fenestra), is unique within Diapsida. Although much more work needs to be done, we showed that advanced X-ray imaging techniques open a window for understanding pterosaur cranial anatomy and provide a new perspective for investigating the evolutionary history of these flying reptiles.


Biological Evolution , Skull , X-Rays , Radiography , Skull/diagnostic imaging , Polymers
17.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654018

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Bone Regeneration , Tissue Scaffolds , Transcriptome , Animals , Bone Regeneration/physiology , Polyesters , Skull/surgery , Mesenchymal Stem Cells , Mesoderm/cytology , Cell Differentiation , Tissue Engineering/methods , Cranial Sutures , Biocompatible Materials
18.
Int J Med Sci ; 21(5): 958-964, 2024.
Article En | MEDLINE | ID: mdl-38617003

Nowadays dog bite is becoming a world public health problem. Therefore, the study aimed to develop a dog bite animal model that is helpful to solve these problems. In this study, the skull of an adult dog was scanned. The three-dimensional model of the dog maxillofacial bones and dentition was built by MIMICS. Next, the model was printed with Co-Cr alloy by using selective laser sintering technology to develop the dog bite simulation pliers. Then, to simulate dog bite to most, the maximum bite force of the pliers was measured and actions contained in dog bite process was analyzed. Afterwards, according to action analysis results, rabbits were bitten by the prepared instrument in actions that simulate dog's bite. Finally, the reproducibility and controllability of this animal model of dog bite injuries was validated in an in vivo study. The results showed a reliable animal model of dog bite injuries has been developed in this study. The sites and severities of the injuries could be adjusted as the operator wishes and the animal model of dog bite injuries was highly repeatable. This study also indicates the feasibility of using digital technology in establishing animal bite models.


Bites and Stings , Skull , Dogs , Animals , Rabbits , Reproducibility of Results , Alloys , Models, Animal
19.
BMC Ecol Evol ; 24(1): 39, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38622512

Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.


Biological Evolution , Skull , Humans , Animals , Phylogeny , Skull/anatomy & histology , Head , Carnivory , Mammals
20.
Nat Commun ; 15(1): 3275, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627430

Functional trade-offs can affect patterns of morphological and ecological evolution as well as the magnitude of morphological changes through evolutionary time. Using morpho-functional landscape modelling on the cranium of 132 carnivore species, we focused on the macroevolutionary effects of the trade-off between bite force and bite velocity. Here, we show that rates of evolution in form (morphology) are decoupled from rates of evolution in function. Further, we found theoretical morphologies optimising for velocity to be more diverse, while a much smaller phenotypic space was occupied by shapes optimising force. This pattern of differential representation of different functions in theoretical morphological space was highly correlated with patterns of actual morphological disparity. We hypothesise that many-to-one mapping of cranium shape on function may prevent the detection of direct relationships between form and function. As comparatively only few morphologies optimise bite force, species optimising this function may be less abundant because they are less likely to evolve. This, in turn, may explain why certain clades are less variable than others. Given the ubiquity of functional trade-offs in biological systems, these patterns may be general and may help to explain the unevenness of morphological and functional diversity across the tree of life.


Biological Evolution , Skull , Skull/anatomy & histology , Bite Force , Phylogeny
...